By Sheldon L | Published at 2020-03-30 | Updated at 2020-03-30 |
$RA/Dec$ => $HA/Dec$ => $Alt/Az$:
\[HA = \theta_L - RA\] \[sin(Alt) = sin(\delta) sin(\phi) + cos(\delta) cos(\phi) cos(HA)\] \[sin(Az) = - sin(HA) cos(\delta) / cos(Alt)\] \[cos(Az) = ( sin(\delta) cos(Alt) - sin(\phi) sin(Alt) cos(Alt) ) / cos(\phi)\]$Alt/Az$ => $HA/Dec$ => $RA/Dec$:
\[sin(\delta) = sin(Alt)sin(\phi) + cos(a) cos(φ) cos(A)\] \[sin(HA) = - sin(Az) cos(Alt) / cos(\delta)\] \[cos(HA) = ( sin(Alt) cos(\phi) - sin(\delta) sin(\phi) cos(\phi) ) / cos(\delta)\] \[RA = \theta_L - HA\]